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The problem of determining the stationary temperature field in a plate
with a disk of arbitrary profile is discussed for the case of a nonideal
thermal contact between the plate and the disk. Heat transfer accord-
ing to Newton's law takes place between the plate and the ambient me-
dium,

Let a disk of arbitrary configuration be soldered
into a thin elastic unbounded plate. Between the plate
and the disk, there is a thin intermediate layer; heat
transfer, symmetrical with respect to the middle sur-
face, takes place with the ambient medium according
to Newton's law. We substitute a physical curve L with
normalized thermophysical parameters for the inter-
mediate layer. The problem of determining a general-
ized two-dimensional temperature field T(x,y) in such
a plate reduced to the solution of the equation
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for certain specific conditions at infinity and on the
curve L of the joint.

The general solution to Eq. (1) is chosen in the
form

T(x, y) =tx y)+1*(x, ), (2)

where t is the solution of a homogeneous equation that
corresponds to Eq. (1).

We assume that at infinity t(x, y) — 0 and that atthe
contour L, t satisfies the conditions of nonideal ther-
mal contact [2, 3]:

0* / ot ot
Dy o (1) + 2 2 — = 1 (50),
0653( 1) + ( 1 on, 2 an, ) f1(5)
» o
by o (1) £ 6( +
o gy (=1 + 0
e S| 12k — ) = fa(s), (3)
ny

where

oe*

on, ]’

o+
*a—sg‘ + (A —2y)

mw=—2po

fa(s) = — 6(As -+ Ag) o (4)
on,

(1]

The solution to the homogeneous equation

At —»2t =0, (5)
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that satisfies the conditions at the contour(3) and van-
ishes at infinity is taken in the form

tx, y)=v(x, v+ ulx, y), (6)

where
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The functions v(x,y) and u(x, y) are the solutions of the
heat-conduction equation for a plate with heat transfer
under the action of sources and dipoles having the den-
sities p(s) and y(s), respectively, located on curve L,
These functions are analogs of the logarithmic poten—
tials of single and double layers, while for athermally
insulated plate (» =0), they reduce to ordinary poten-—
tials.

Since the functions v(x, y) and u(x, y) possess the
properties of potentials of single and double layers,
we get the following expressions for their limiting
values at the contour L:

v (s,) = 2L 5 p(s) K, (nr) ds,
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Taking into consideration the properties of the func-
tions Ky(nr) and K (nr), the limiting values of the nor-
mal derivatives and second tangential derivatives of
the functions v and u can be obtained as:
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All integrals in formulas (10), which contain the ex~
pressions cos a K;(nr) and cos oy K{(ur) should be un-
derstood in the sense of the principal value according
to Cauchy.

Substituting (9) and (10), with allowance for (6),
into boundary conditions (3), we get the following sys-
tem of singular integrodifferential equations defining

p(s) and ¥(s):
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Sefting A; =, in (11), these equations will hold also
for an open contour.f In this case, in order that the
temperature and its normal derivative be continuous
at the end points of the contour, the densities p(s) and
v(s) must vanish at these points.

It is noteworthy that, for n =0, Egs. (11) coincide
with Egs. (19) in [1] if the latter are somewhat trans-
formed.

Eqgs. (11) are appreciably simplified when the con-
tact thermal conductivity A, =0—i.e., when for the
intermediate layer the heat fluxes between the plate
and the disk are equal and proportional to the bound-
ary-temperature difference. Specifically, if the plate
contains a linear inclusion (for example, a heat-con-
ducting crack) instead of a disk, then for A; =0, from
the first equation of the system (11), we get plsy) =0,
while the second equation of the system takesthe form:
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In the case of a rectilinear inclusion of length 21,
located along the Ox-axis symmetrically to the origin
of the coordinates, Eq. (12) is written as follows:
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where w = (¢ — x).

Finally, we find the temperature field in a plate
with a circular disk of radius R. Postulating o =,
k=ky=1/R, r =2Rsin & in system (11), we get
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1 This means that the plate contains a thin inclusion
of adifferent material, distributed alongthe curve L.
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Assume that fi(¢) and f,(¢) may be represented in

the form of an absolutely converging series, as follows:
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The solution of system (14) is taken as:
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We substitute (16) into (14) and evaluate the inte-
grals, using a formula for adding the function Ky(nr)
[5, p. 355]. Equating the coefficients of like cosines,
after certain transformations, with the aid of a rela-
tion between Bessel functions [6], we get
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Here, ®R is the argument of the functions K, and
I, while the prime denotes the derivatives of this ar-
gument,

Considering certain asymptotic expressions for the
Bessel functions and treating the latter as functions of
their arguments [6], for n — =, we get
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From the absolute convergence of series (15) and
from the form of expression (17), it follows that series
(16) are absolutely convergent.
Knowing p(¢) and y(¢), from formulas (7), (8), with
allowance for (6), we obtain the disk and plate tem-
peratures:
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The latter series converge uniformly. Indeed, by
setting in them cos n¢ =1, p =R, and considering that
In(np) = IH(nR) for p = R, and Kp(np) = Kn(nR) for
p = R, we get majorant series which,by virtue of the
aforesaid conditions, converge absolutely., This con-
firms our previous assertion,

Let us examine the case in which a portion of the
plate is immersed in a medium of constant tempera-
ture T, and the remaining portion, together with the
disk, is exposed to a zero-temperature medium. Then

to=T,[1=S.(y+d)],

(18)

(19)

where S;(y + d) is the Heaviside function; the partic-
ular solution of Eq, (1) then has the form
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In the regiony > —d, for d > R, the function t{y) may
be written in the form
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or in polar coordinates with an axis directed along Oy,
as follows:
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Substituting (20) into formulas (4), taking into con-
sideration that (8/8ny) = —(8/8p), ©%/8sd) = (1/RH)(8Y
/Bquz), and expanding exp (—mp cos ¢) into a series in
Bessel functions [6, p. 59], after certain transforma-
tions, we get fi{(¢) and f,(¢) in the form (15), where
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The argument of function I is nR, while the prime
denotes the derivative of this argument,

From known fg) and fgz), we obtain Ap and Bp; then
the temperature field is defined by expressions (18).

NOTATION

T(x,y) is the temperature of plate with disk;
tm(x,y) is the ambient temperature; tXx,y) is afunc-
tion characterizing the perturbation of the tempera-
ture field in the presence of the disk; n? = @i/6A{ (sub-
scripts 1 = 1, 2 denote quantities pertaining to thedisk
and plate, respectively); «j are the heat transfer co-
efficients; Aj are the thermal conductivity coefficients;
26 is the plate thickness; A, is the reduced thermal
conductivity of the intermediate layer; h is the ther-
mal conductivity; s and s, are the arc coordinates
of points N and M, on curve L; n and n; are the
inner normal to L at points N and M,, respectively;



p(s) and y(s) are the density of sources and dipoles
located on curve L, respectively; r is the spacingbe-
tween point N on curve L and an arbitrary point of the
plane xOy; Kg(sr), Ky(s1) are the MacDonald functions
of first and second order, respectively; « and oy are
the angles formed by vector NTJN and the positive tan-
gents to L. at points N and M;, respectively; k and k;
are the curvatures of L at these points; (p, ¢) are the
polar coordinates; superscripts + and — denote limit-
ing values of quantities when approaching curve L from
the side of the disk or plate, respectively.
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